	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 1 (Topic 1 parts a&b)			
Topic	Student Checklist	R	Α	G
	Describe how the Dalton model of an atom has changed over time because of the discovery of subatomic particles			
	Describe the structure of an atom as a nucleus containing protons and neutrons, surrounded by electrons in shells			
	Recall the relative charge and relative mass of: a proton, a neutron and an electron			
	Explain why atoms contain equal numbers of protons and electrons			
	Describe the nucleus of an atom as very small compared to the overall size of the atom			
	Recall that most of the mass of an atom is concentrated in the nucleus			
	Recall the meaning of the term mass number of an atom			
	Describe atoms of a given element as having the same number of protons in the nucleus and that this number is unique			
	Describe what isotopes are			
	Calculate the numbers of protons, neutrons and electrons in atoms given the atomic number and mass number			
part a	Explain how the existence of isotopes results in relative atomic masses of some elements not being whole numbers			
Topic 1a – Key concepts in chemistry (part a)	HT ONLY: Calculate the relative atomic mass of an element from the relative masses and abundances of its isotopes			
chem	Describe how Mendeleev arranged the elements known at that time, in a periodic table by using properties of these elements and their compounds			
epts ir	Describe how Mendeleev used his table to predict the existence and properties of some elements not discovered by then			
conce	Explain that Mendeleev thought he had arranged elements in order of increasing relative atomic mass but this was not always true			
– Key	Explain the meaning of atomic number of an element in terms of position in the periodic table and number of protons in the nucleus			
13	Describe how elements are arranged in the groups and periods of the periodic table			
Topic	Identify elements as metals or non-metals according to their position in the periodic table, explaining this division in terms of atomic structure			
	Predict the electronic configurations of the first 20 elements in the periodic table as diagrams and in the form 2.8.1 etc			
	Explain how the electronic configuration of an element is related to its position in the periodic table			
	Explain how ionic bonds are formed to produce cations and anions, including the use of dot and cross diagrams			
	Recall that an ion is an atom or group of atoms with a positive or negative charge			
	Calculate the numbers of protons, neutrons and electrons in simple ions given the atomic number and mass number			
	Explain the formation of ions in ionic compounds from their atoms, limited to compounds of elements in groups 1, 2, 6 and 7			
	Explain the use of the endings –ide and –ate in the names of compounds			
	Deduce the formulae of ionic compounds given the formulae of the constituent ions			
	Explain the structure of an ionic compound including a description of the lattice and electrostatic forces			
	Explain the structure of all folice composite including a description of the lattice and electrostatic forces	<u> </u>		<u> </u>

-	Explain how a covalent bond is formed when a pair of electrons is shared between two atoms	
	Recall that covalent bonding results in the formation of molecules	
	Recall the typical size (order of magnitude) of atoms and small molecules	
	Explain the formation of simple molecular, covalent substances, using dot and cross diagrams, including:	
	H, HCl, H ₂ 0, CH ₄ , O ₂ , CO ₂	
	Explain why elements and compounds can be classified as: ionic, simple molecular (covalent), giant	
	covalent and metallic	
	Explain how the structure and bonding of substances results in different physical properties	
	Explain the properties of ionic compounds limited to: melting/boiling points, forces between ions and	
	conductivity	
	Explain the properties of typical covalent, simple molecular compounds limited to: melting/boiling	
	points, forces between ions and conductivity	
	Recall that graphite and diamond are different forms of carbon and that they are examples of giant	
	covalent substances	
(q :	Describe the structures of graphite and diamond	
art	Explain, in terms of structure and bonding, why graphite and diamond have different uses	
у (р	Explain the properties of fullerenes including C ₆₀ and graphene in terms of their structures and bonding	
str	Describe, using poly(ethene) as the example, that simple polymers consist of large molecules containing	
mi	chains of carbon atoms	
che	Explain the properties of metals, including malleability and the ability to conduct electricity	
Ë.	Describe the limitations of particular representations and models, to include dot & cross, ball & stick	
pts	models & 2/3D	
nce	Describe the properties of most metals	
00	Calculate relative formula mass given relative atomic masses	
(ey	Calculate the formulae of simple compounds from reacting masses and understand that these are	
Ī	empirical formulae	
1b	Deduce: empirical formula of a compound from the formula of its molecule	
Topic 1b – Key concepts in chemistry (part b)	Deduce: molecular formula of a compound from its empirical formula and its relative molecular mass	
2	Describe an experiment to determine the empirical formula of a simple compound such as magnesium	
	oxide	
	Explain the law of conservation of mass applied to: a closed system and a non-enclosed system	
	Calculate masses of reactants and products from balanced equations, given the mass of one substance	
	Calculate the concentration of solutions in g dm ⁻³	
	HT ONLY: Recall what one mole of particles of a substance is defined as	
	HT ONLY: Calculate the number of: moles of particles of a substance in a given mass of that substance	
	and vice versa	
	HT ONLY: Calculate the number of: particles of a substance in a given number of moles of that	
	substance and vice versa	
	HT ONLY: Calculate the number of: particles of a substance in a given mass of that substance and vice	
	versa	
	HT ONLY: Explain why, in a reaction, the mass of product formed is controlled by the mass of the	
	reactant which is not in excess	
	HT ONLY: Deduce the stoichiometry of a reaction from the masses of the reactants and products	

Topic	Edexcel (combined) Chemistry Topics (1SC0) from 2016 - Paper 1 (Topics 2,3&4) Student Checklist	R	Α	G
	Describe the arrangement, movement and the relative energy of particles in each of the three states of matter			
	Recall the names used for the interconversions between the three states of matter			
	Compare physical changes with chemical reactions			
S O	Explain the changes in arrangement, movement and energy of particles during these interconversions			
ate	Predict the physical state of a substance under specified conditions, given suitable data			
s St	Explain the difference between the use of 'pure' in chemistry compared with its everyday use and the			
īE	differences between a pure substance and a mixture			
<u>x</u> t	Interpret melting point data to distinguish between pure substances and mixtures			
Ξ	Explain the experimental techniques for separation of mixtures by: simple & fractional distillation,			
anc	filtration, crystallisation and paper chromatography			
ē	Describe an appropriate experimental technique to separate a mixture when knowing the properties			
att	Describe what paper chromatography is and explain how it can be used to separate a mixture			
Ē	Interpret a paper chromatogram: to distinguish between pure and impure substances			
Topic 2 – States of matter and mixtures States of matter	Interpret a paper chromatogram: to identify substances by comparison with known substances			
	Interpret a paper chromatogram: to identify substances by calculation and use of Rf values			
	Core Practical: Investigate the composition of inks using simple distillation and paper chromatography			
	Describe how: waste and ground water can be made potable, including the need for sedimentation,			
	filtration and chlorination			
	Describe how: sea water can be made potable by using distillation			
	Describe how: water used in analysis must not contain any dissolved salts			

Topic 3 – Chemical changes

Recall that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide	
ions Recall that the pH values of acids, alkalis and neutral	++
Recall the effect of acids and alkalis on indicators, including litmus, methyl orange and phenolphthalein	-+-
HT ONLY: Recall what the higher the concentration of hydrogen ions and hydroxide ions in a solution	-+-
does to the pH of a solution	
HT ONLY: Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of	
the solution decreases by 1	
Core Practical: Investigate the change in pH on adding powdered calcium hydroxide or calcium oxide to a	
dilute hydrochloric acid	
HT ONLY: Explain the terms dilute and concentrated, with respect to amount of substances in solution	
HT ONLY: Explain the terms weak and strong acids, with respect to the degree of dissociation into ions	
Recall what is formed when a base of any substance reacts with an acid	-
Recall what alkalis and bases are	-
Explain the general reactions of aqueous solutions of acids with: metals, metal oxides, metal hydroxides	-
and metal carbonates	
Describe the chemical test for: hydrogen and carbon dioxide (using limewater)	
Describe a neutralisation reaction as a reaction between an acid and a base	
Explain an acid-alkali neutralisation as a reaction in which in terms of the reaction between hydrogen	
and hydroxide ions	
Explain why, when soluble salts are prepared from an acid and an insoluble reactant: excess reactant is	
added and excess insoluble reactant is removed	
Explain why, if soluble salts are prepared from an acid and a soluble reactant: titration must be used and	
what is left after the reaction is only salt and water	
Core Practical: Investigate the preparation of pure, dry hydrated copper sulfate crystals starting from	
copper oxide including the use of a water bath	
Describe how to carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to	
prepare a pure, dry salt	
Recall the general rules which describe the solubility of all common sodium, potassium and ammonium	
salts	
Recall the general rules which describe the solubility of all nitrates	
Recall the general rules which describe the solubility of common chlorides (except those of silver and	
lead)	
Recall the general rules which describe the solubility of common sulfates (except those of lead, barium	
and calcium)	
Recall the general rules which describe the solubility of common carbonates and hydroxides (except	
those of sodium, potassium and ammonium)	
Predict, using solubility rules, whether or not a precipitate will be formed when named solutions are	
mixed together, naming the precipitate if any is formed	
Describe the method used to prepare a pure, dry sample of an insoluble salt	
Recall that electrolytes are ionic compounds in the molten state or dissolved in water	
Describe electrolysis as a process in which electrical energy, from a direct current supply, decomposes	
electrolytes	
Explain the movement of ions during electrolysis	
Explain the formation of the products in the electrolysis, using inert electrodes, for copper & sodium	
chloride solution, sodium sulfate, acidified water & molten lead bromide	
Predict the products of electrolysis of other binary, ionic compounds in the molten state	
HT ONLY: Write half equations for reactions occurring at the anode and cathode in electrolysis	
HT ONLY: Explain oxidation and reduction in terms of loss or gain of electrons	
HT ONLY: Recall that reduction occurs at the cathode and that oxidation occurs at the anode in	
electrolysis reactions	\longrightarrow
Explain the formation of the products in the electrolysis of copper sulfate solution, using copper	
electrodes, and how this can be used to purify copper	\longrightarrow
Core Practical: Investigate the electrolysis of copper sulfate solution with inert electrodes and copper	
electrodes	

and equilibria	Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions	
	HT ONLY: Explain displacement reactions as redox reactions, in terms of gain or loss of electrons	
	Explain the reactivity series of metals in terms of the reactivity of the metals with water and dilute acids (relative to carbon)	
	Recall what ores and native metals are	
	Describe what oxidation and reduction are	
	Explain why the method used to extract a metal from its ore is related to its position in the reactivity series and the cost of the extraction process (electrolysis and smelting)	
als	HT ONLY: Evaluate alternative biological methods of metal extraction (bacterial and phytoextraction)	
net	Explain how a metal's relative resistance to oxidation is related to its position in the reactivity series	
Topic 4 – Extracting metals	Evaluate the advantages of recycling metals	
	Describe what a life time assessment for a product involves and what it needs to consider	
	Evaluate data from a life cycle assessment of a product	
	Recall that chemical reactions are reversible, the use of the symbol = in equations and how the direction of some reversible reactions can be altered	
	Explain what is meant by dynamic equilibrium	
	Describe the formation of ammonia as a reversible reaction in the Haber process	
	Recall the conditions for the Haber process	
	HT ONLY: Predict how the position of a dynamic equilibrium is affected by changes in temperature,	
	pressure and concentration	