	Edexcel Single Chemistry (1CI0) from 2016 Topics C2&3			
Topic	Student Checklist	R	Α	G
- a	Describe the arrangement, movement and the relative energy of particles in each of the three states of matter			
att	Recall the names used for the interconversions between the three states of matter			
f H	Compare physical changes with chemical reactions			
o s	Explain the changes in arrangement, movement and energy of particles during these interconversions			
ate	Predict the physical state of a substance under specified conditions, given suitable data			
s St	Explain the difference between the use of 'pure' in chemistry compared with its everyday use and the			
ıre	differences between a pure substance and a mixture			
ixt	Interpret melting point data to distinguish between pure substances and mixtures			
_E	Explain the experimental techniques for separation of mixtures by: simple & fractional distillation,			
anc	filtration, crystallisation and paper chromatography			
ē	Describe an appropriate experimental technique to separate a mixture when knowing the properties			
att	Describe what paper chromatography is and explain how it can be used to separate a mixture			
Ē	Interpret a paper chromatogram: to distinguish between pure and impure substances			
o s	Interpret a paper chromatogram: to identify substances by comparison with known substances			
Topic 2 – States of matter and mixtures States of matter	Interpret a paper chromatogram: to identify substances by calculation and use of Rf values			
	Core Practical: Investigate the composition of inks using simple distillation and paper chromatography			
	Describe how: waste and ground water can be made potable, including the need for sedimentation,			
	filtration and chlorination			
	Describe how: sea water can be made potable by using distillation			
	Describe how: water used in analysis must not contain any dissolved salts			

Topic 3 – Chemical changes

Recall that acids in solution are sources of hydrogen ions and alkalis in solution are sources of hydroxide		
ions		
Recall that the pH values of acids, alkalis and neutral		
Recall the effect of acids and alkalis on indicators, including litmus, methyl orange and phenolphthalein		
HT ONLY: Recall what the higher the concentration of hydrogen ions and hydroxide ions in a solution		
does to the pH of a solution		
HT ONLY: Recall that as hydrogen ion concentration in a solution increases by a factor of 10, the pH of		
the solution decreases by 1		
Core Practical: Investigate the change in pH on adding powdered calcium hydroxide or calcium oxide to a		
dilute hydrochloric acid		
HT ONLY: Explain the terms dilute and concentrated, with respect to amount of substances in solution		
HT ONLY: Explain the terms weak and strong acids, with respect to the degree of dissociation into ions		
Recall what is formed when a base of any substance reacts with an acid		
Recall what alkalis and bases are		
Explain the general reactions of aqueous solutions of acids with: metals, metal oxides, metal hydroxides		
and metal carbonates		
Describe the chemical test for: hydrogen and carbon dioxide (using limewater)		
Describe a neutralisation reaction as a reaction between an acid and a base		
Explain an acid-alkali neutralisation as a reaction in which in terms of the reaction between hydrogen		
and hydroxide ions	-	
Explain why, when soluble salts are prepared from an acid and an insoluble reactant: excess reactant is		
added and excess insoluble reactant is removed	-	
Explain why, if soluble salts are prepared from an acid and a soluble reactant: titration must be used and		
what is left after the reaction is only salt and water	-	
Core Practical: Investigate the preparation of pure, dry hydrated copper sulfate crystals starting from		
copper oxide including the use of a water bath	-	
Describe how to carry out an acid-alkali titration, using burette, pipette and a suitable indicator, to		
Prepare a pure, dry salt Recall the general rules which describe the solubility of all common sodium, potassium and ammonium	-	
salts		
Recall the general rules which describe the solubility of all nitrates		
Recall the general rules which describe the solubility of common chlorides (except those of silver and		
lead)		
Recall the general rules which describe the solubility of common sulfates (except those of lead, barium		
and calcium)		
Recall the general rules which describe the solubility of common carbonates and hydroxides (except		
those of sodium, potassium and ammonium)		
Predict, using solubility rules, whether or not a precipitate will be formed when named solutions are		
mixed together, naming the precipitate if any is formed		
Describe the method used to prepare a pure, dry sample of an insoluble salt		
Recall that electrolytes are ionic compounds in the molten state or dissolved in water		
Describe electrolysis as a process in which electrical energy, from a direct current supply, decomposes		
electrolytes		
Explain the movement of ions during electrolysis		
Explain the formation of the products in the electrolysis, using inert electrodes, for copper & sodium		
chloride solution, sodium sulfate, acidified water & molten lead bromide		
Predict the products of electrolysis of other binary, ionic compounds in the molten state		
HT ONLY: Write half equations for reactions occurring at the anode and cathode in electrolysis		
HT ONLY: Explain oxidation and reduction in terms of loss or gain of electrons		
HT ONLY: Recall that reduction occurs at the cathode and that oxidation occurs at the anode in		
electrolysis reactions		
Explain the formation of the products in the electrolysis of copper sulfate solution, using copper		
electrodes, and how this can be used to purify copper		
Core Practical: Investigate the electrolysis of copper sulfate solution with inert electrodes and copper		
electrodes	i I	

	Edexcel Single Chemistry (1CI0) from 2016 Topics C4&5			
Topic	Student Checklist	R	Α	G
	Deduce the relative reactivity of some metals, by their reactions with water, acids and salt solutions			
	HT ONLY: Explain displacement reactions as redox reactions, in terms of gain or loss of electrons			
	Explain the reactivity series of metals in terms of the reactivity of the metals with water and dilute acids			
<u>.</u> ë	(relative to carbon)			
<u>ia</u>	Recall what ores and native metals are			
gri	Describe what oxidation and reduction are			
d e	Explain why the method used to extract a metal from its ore is related to its position in the reactivity			
an	series and the cost of the extraction process (electrolysis and smelting)			
Extracting metals and equilibria	HT ONLY: Evaluate alternative biological methods of metal extraction (bacterial and phytoextraction)			
net	Explain how a metal's relative resistance to oxidation is related to its position in the reactivity series			
<u>ه</u>	Evaluate the advantages of recycling metals			
늉	Describe what a life time assessment for a product involves and what it needs to consider			
tra	Evaluate data from a life cycle assessment of a product			
	Recall that chemical reactions are reversible, the use of the symbol in equations and how the direction			
4	of some reversible reactions can be altered			
Topic ,	Explain what is meant by dynamic equilibrium			
To	Describe the formation of ammonia as a reversible reaction in the Haber process			
	Recall the conditions for the Haber process			
	HT ONLY: Predict how the position of a dynamic equilibrium is affected by changes in temperature,			
	pressure and concentration			

			_
-	Chem ONLY: Recall that most metals are transition metals and describe their typical properties		
	Chem ONLY: Recall that the oxidation of metals results in corrosion		
	Chem ONLY: Explain how rusting of iron can be prevented		
	Chem ONLY: Explain how electroplating can be used to improve the appearance and/or the resistance to		
	corrosion of metal objects		
	Chem ONLY: Explain, using models, why converting pure metals into alloys often increases the strength		
	of the product		
	Chem ONLY: Explain why iron is alloyed with other metals to produce alloy steels		_
	Chem ONLY: Explain how the uses of metals are related to their properties (and vice versa) for AL, CU, Ag		
	and alloys inc: magnalium and brass	$\perp \downarrow \perp$	_
ļ	HT & Chem ONLY: Calculate the concentration of solutions in mol dm ⁻³ and convert concentration in g dm ⁻³ into mol dm ⁻³ and vice versa		
	Chem ONLY: Core Practical: Carry out an accurate acid-alkali titration, using burette, pipette and a		
	suitable indicator		
⊣	HT & Chem ONLY: Carry out simple calculations using the results of titrations to calculate an unknown		
itry	concentration/volume of a solution		
m is	Chem ONLY: Calculate the percentage yield of a reaction from the actual yield and the theoretical yield		
che	Chem ONLY: Describe that the actual yield of a reaction is usually less than the theoretical yield and that		
te (the causes of this		_
ara	Chem ONLY: Recall the atom economy of a reaction forming a desired product		_
)ep	Chem ONLY: Calculate the atom economy of a reaction forming a desired product	$\perp \downarrow \perp$	_
ı	HT & Chem ONLY: Explain why a particular reaction pathway is chosen to produce a specified product		_
Topic 5 – Separate chemistry 1	HT & Chem ONLY: Describe what the molar volume, of any gas at room temperature and pressure is	$\perp \downarrow \perp \downarrow$	_
ō	HT & Chem ONLY: Use the molar volume and balanced equations in calculations involving the masses		
_	of solids and volumes of gases		_
	HT & Chem ONLY: Use Avogadro's law to calculate volumes of gases involved in a gaseous reaction,		
	given the relevant equation		_
	Chem ONLY: Describe what the Haber process is		_
-	HT & Chem ONLY: Predict how the rate of attainment of equilibrium is affected by: changes in		
	temperature, pressure, concentration and use of a catalyst		_
	HT & Chem ONLY: Explain how, in industrial reactions, including the Haber process, conditions used		
	are related to cost, energy and acceptable yield Chem ONLY: Name the elements (in compound form) fertilisers may contain to promote plant growth		-
	Chem ONLY: Describe how ammonia reacts with nitric acid to produce a salt that is used as a fertiliser		\dashv
	Chem ONLY: Describe now ammonia reacts with nitric acid to produce a sait that is used as a fertiliser Chem ONLY: Describe and compare the laboratory and industrial production of ammonium sulfate		-
			-
	Chem ONLY: Recall that a chemical cell produces a voltage until what happens Chem ONLY: Recall that in a hydrogen—oxygen fuel cell hydrogen and oxygen are used to produce a	-	\dashv
	voltage and name the only product		
	Chem ONLY: Evaluate the strengths and weaknesses of fuel cells for given uses		\dashv
	CHEIN ONLT. Evaluate the strengths and weaknesses of fuel cells for given uses		